
A Test of the Adhesion Approximation for

Gravitational Clustering

Adrian L. Melott, 1 Sergei F. Shandarin, 1 and

David H. Weinberg _

1 Department of Physics and Astronomy

University of Kansas

Lawrence, Kansas 66045, USA
2Institute for Advanced Study

Princeton, New Jersey 08540, USA



A Test of the Adhesion Approximation for

Gravitational Clustering

Adrian L. Melott, 1 Sergei F. Shandarin, 1 and

David H. Weinberg 2

i Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045

Institute for Advanced Study, Princeton, New Jersey 08540

ABSTRACT

We quantitatively compare a particle implementation of the adhesion approximation

to fully non-linear, numerical "N-body" simulations. Our primary tool, cross-correlation

of N-body simulations with the adhesion approximation, indicates good agreement, better

than that found by the same test performed with the Zel'dovich approximation (hereafter

ZA). However, the cross-correlation is not as good as that of the truncated Zel'dovich

approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing

the initial density field with a Gaussian filter. We confirm that the adhesion approximation

produces an excessively filamentary distribution. Relative to the N-body results, we also

find that: (a) the power spectrum obtained from the adhesion approximation is more

accurate than that from ZA or TZA, (b) the error in the phase angle of Fourier components

is worse than that from TZA, and (c) the mass distribution function is more accurate than

that from ZA or TZA. It appears that adhesion performs weU statistically, but that TZA

is more accurate dynamically, in the sense of moving mass to the right place.

Subject Heading: Galaxies, formation, clustering-large-scale structure of the Universe



I. INTRODUCTION

The large-scale structure of the Universe is thought to have arisen from primarily

gravitational processes acting to amplify primordial density fluctuations. In the limit

of small fluctuations, the differential equations for the density contrast can be solved

by linear perturbation theory (see, e.g., Peebles [1980]). Zel'dovich (1970) proposed an

approximation in which the linear-order particle velocities are extrapolated, instead of the

linear density contrast. It has often been supposed that this approximation is appropriate

only for initial fluctuation spectra with very little power on small scales. However, Coles,

Melott and Shandarin (1993; hereafter CMS) compared a number of approximate schemes

for gravitational evolution, starting from initial conditions with power spectra P(k) cx k",

and found that the Zel'dovich approximation (hereafter ZA) was the most successful of

these for all indices n < +1.

There is considerable benefit to applying the same tests to a series of approximations,

so that they can be compared with each other. In this paper we report the results of

applying the CMS tests to the adhesion approximation, proposed by Gurbatov, Saichev

and Shandarin (1985, 1989) and implemented in a particle code by Weinberg and Gunn

(1990). (For further discussion of the adhesion approximation, see Kofman et al. [1992]

and references therein).

CMS proposed a simple extension of ZA, obtained by smoothing the initial density field

before applying ZA, in order to suppress the effect of strongly non-linear modes, which tend

to scatter particles out of collapsed regions. This "truncated Zel'dovich approximation"

(hereafter TZA) was considerably refined and tested by Melott, Pellman and Shandarin

(1993; hereafter MPS). They found that the optimal way to smooth the initial conditions

is by convolution with a Gaussian filter whose radius is a specific, spectrum-dependent

multiple of the scale of nonlinearity. TZA is a major improvement over ZA, and it as fast

as one step in an N-body simulation. Any numerical implementation of ZA automatically

truncates Fourier modes below the resolution limit (e.g. the Nyquist frequency in a grid

code), but in TZA the truncation is handled in a controlled and optimized manner. In this

paper, we will compare the adhesion approximation (hereafter AA) to N-body results and
to ZA and TZA.

For a complete discussion of ZA, TZA, and AA, we refer the reader to the papers

cited above. Here we limit ourselves to a simple physical description of AA, which can

itself be regarded as an extension of ZA. With an appropriate choice of variables, ZA can

be regarded as simple inertial motion, continuing the initial velocities of fluid elements

(see e.g. Shandarin & Zeldovich, 1989). The approximation works much better than one

might think based on this description, in large part because the potential has a larger

coherence length than the density if the effective spectral index is n < 1. AA adds to

the inertial motion a viscosity force v • V2v, where v is the velocity and v is the viscosity

coefficient. This viscosity mimics some of the effects of nonlinear gravity, by eliminating

the relative velocity of intersecting flows and causing fluid elements to "stick" when they

fall into caustics. However, for finite v this term is also nonzero in the voids, where the

flow accelerates away from underdense perturbations, and in these regions it is likely to

degrade the accuracy of the approximation.



The addition of the viscosity term to inertial motion yields Burgers' equation. If the

initial velocity field is a potential flow (as expected in gravitational instability models), then

Burgers' equation admits an exact integral expression for the velocity field at any later

time. This integral can be evaluated by steepest-descent in the limit that the viscosity

approaches (but does not equal) zero. In this approach (Gurbatov, Saichev and Shandarin

1985, 1989; Nusser and Dekel, 1990; Kofman, Pogosyan and Shandarin 1992; Kofman et

al. 1992; Sahni, Sathyaprakash and Shandarin 1991), the pancakes are infinitely thin, and

the flow is exactly that given by ZA outside of multistream regions. From a geometrical

analysis of the velocity field, one can derive the skeleton of the structure (i.e. the location

of sheets, filaments, and knots) at any time, but not a detailed distribution of matter inside

collapsed regions.

In this paper we use the particle implementation of AA described by Weinberg and

Gunn (1990). In this method, one evaluates the Burgers integral by Gaussian convolution,

using a finite value of the viscosity parameter. The resulting code is closer in spirit to

an N-body code; one integrates particle orbits, at each timestep using the velocity field

implied by the solution to Burgers' equation.

II. SIMULATIONS

In our AA simulations, we used the smallest value of the viscosity that did not produce

numerical overflows (see Weinberg and Gunn [1990] for further discussion). We checked

the choice of timestep by comparing to similar runs with shorter timesteps. The adhesion

simulations had initial conditions identical to one realization set of N-body simulations,

described in Melott and Shandarin (1993). We used power law initial density fluctuation

spectra, P(k) o¢ k" for n = -2,-1,0, +1. We chose for analysis in all of these the moment

when rms fluctuations are just going nonlinear (,Sp/p = 1) at a wavelength of L/8, where

L is the box size. At this output time, nonlinear structures are well resolved, but the scale

of nonlinearity is small enough that the simulations' periodic boundary conditions do not

cause problems. We also checked results at a later stage when the nonlinear wavelength

was L/4. The N-body and adhesion simulations both used 1283 particles on a 1283 mesh.

Figures la, 2a, 3a, and 4a show slices one cell thick through the N-body simulations for

the four initial power spectra. In these greyscale renderings, regions below the mean density

are white, and regions above a density contrast of 10 are black. Figures lb to 4b show

corresponding slices from the adhesion simulations with the same initial conditions. Figures

lc to 4c show results from TZA, the most successful of the approximations previously tested
in this series.

As noted elsewhere (e.g. Weinberg and Gunn [1990]), the adhesion simulations look

more filamentary than the full N-body simulations. This is a reflection of the fact that

their "superpancakes" (see Melott and Shandarin 1993) are less broken up into subconden-

sations. This difference in texture is more pronounced for larger values of n. Also, there

seem to be some condensations in the adhesion model that have no counterparts in the

N-body run, though this mismatch may be an artifact of plotting thin slices. Although

the TZA figures have fewer objects than either of the others, their locations agree well

with those of the primary condensations in the N-body run.



III. QUANTITATIVE COMPARISON

The most direct comparison we can make with N-body asks whether the adhesion

simulations put mass in the same place. To address this question quantitatively, we study

the cross-correlation of the adhesion models with the N-body models in the manner of

CMS. We define the cross-correlation statistic S as

< _i b2 >
S - , (1)

0"1 0"2

where bl and b2 are the local density contrast in the N-body and adhesion simulations at

the same spot, and _rl and _r2 are the standard deviations of the two density fields. For

identical density fields, S = 1. When the fields are defined at very high resolution, small

errors in the precise positions of mass concentrations will destroy the correlation between

them. We therefore compute S for a variety of Gaussian smoothings, which are apphed in

the same way to the two fields. The heavy hnes in Figure 5 plot S against the value of tr

in the smoothed N-body density field. The light hnes plot S against _r for TZA. We see

that:

(a) The match to N-body is worse for larger n, since initial conditions with more small

scale power have more strongly nonhnear modes, which cannot be followed by the

approximations.

(b) By comparison with CMS, we find that AA crosscorrelates about as well as ZA for
n = -2, and better for all the other indices.

(c) In all cases, TZA performs better than AA on this test.

Figure 6 compares power spectra of the N-body simulations (heavy solid hnes), the
adhesion simulations (light solid hnes), and TZA (light dashed lines). N-body and AA
are shown at two epochs, when the nonlinear scale is k,_l = L/8 and L/4. TZA is shown
only at k,z = L/8. Small differences in the linear (small-k) part of the spectrum appear
to be a numerical artifact of the N-body code, since both approximations agree better
with linear perturbation theory in this regime. The error may be related to the very low
fluctuation amplitude used in the initial conditions -- one of us (DHW) has found similar
behavior in a different code when starting from very small initial fluctuations. At its worst,
it represents a 25% error in power after an expansion factor of about 5000.

The adhesion approximation underestimates large-k power, but it does a better job
overall than any approximation tested so far. As we see from the dashed lines, TZA has a
considerably larger error in the nonhnear part of the spectrum.

Distributions are characterized by both amplitudes and phases for their Fourier com-
ponents. We tested for phase angle agreement by calculating <cos e>, where e is the
difference in phase angle of the corresponding Fourier coefficients and the averaging is over
spherical shells in wavenumber. Figure 7 plots <cos e > against k. As expected, the
agreement declines steadily with increasing nonlinearity. The n -- +1 model is substan-
tially worse than the others, with gradual improvement through to n = -2 as n declines.
MPS find the same trends for TZA. However, the phase errors for TZA are smaUe," than

4
]



those for AA. It is probably these smaller phase errors that account for TZA's higher

cross-correlation with N-body.

Figure 8 plots the mass density distribution function: N(p) is the number of cells

with density in the range p _ p + dp. For this test, the density fields are defined by

cloud-in-cell weighting of the 128 s particle distributions onto a 64 s mesh. Both AA and

TZA underestimate the number of high-density pixels and overestimate the number of

low- and moderate-density ones, but AA is much more successful here, as it is for the

power spectrum.

IV. DISCUSSION

We summarize our conclusions and compare with previous work:

(a) The adhesion approximation is an substantial improvement over the original Zel'dovich

(1970) approximation in all aspects of its performance (except, of course, computa-

tional speed).

(b) We measure AA's dynamical accuracy by cross-correlation with the N-body density

fields. The agreement is quite good, but not as good as that found for the truncated

Zel'dovich approximation by MPS.

(c) AA reproduces the N-body power spectrum and mass density distribution better than

any other approximation that we have tested so far.

(d) AA makes greater errors than TZA in the phases of Fourier coefficients of the mass
distribution.

(e) By combining the above results with our visual examination of the greyscale plots, we

infer that AA is doing a reasonable job of making condensations but is putting them

in somewhat incorrect positions.

(f) In most respects, AA performs better than the frozen-flow approximation - see Melott,

Lucchin, Matarrese, and Moscardini (1993). However, AA is much more computer
intensive than frozen-flow.

(g) Of the methods that we have studied to date, it appears that TZA is the best dy-

namical approximation, in the sense of moving mass to the right place. AA is the

best statistical approximation, in that it comes closest to reproducing the statistical

results of N-body simulations, at least for the P(k) and N(p) statistics that we have

examined here.

It is not at all clear what are the intrinsic sources of errors in the adhesion particle

method. In one test case, we found that doubling the value of the viscosity coefficient had

almost no impact on the results, which suggests that finite viscosity of the amplitude that

we are using here is not an important source of error. Gurbatov et al. (1985, 1989) applied

the adhesion method in the limit of vanishing viscosity, using it to find the skeleton of

structure, not the details of the mass distribution. That implementation of AA cannot be

compared to N-body simulations in the same way as the particle-pushing implementation

examined here, and it is not clear that it will make the same errors in locating collapsed

structures. We think that further investigation of this question is warranted, but it is

outside the scope of the present study. We should also note that we have compared AA



and TZA for one stage only, when k,,l = 8kf. We found qualitatively similar results for

k,t = 4k I, and we believe that our conclusions will hold for other stages as well.

If one wants a "poor man's N-body" method for evolving specified initial conditions,

TZA has clear advantages over the particle implementation of AA: it is simpler, much

faster, uses less memory, and produces more accurate results (in terms of cross-correlation).

It has similar advantages over other approximations that we have tested. Babul et al.

(1993) have used adhesion to generate initial conditions for simulations of the explosion

scenario, and adhesion may provide a useful computational technique for other specific

applications. However, the adhesion approximation will probably make its most important

contributions as a tool for analytic calculations and as a source of physical insight into the

formation of large-scale structure.
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FIGURE CAPTIONS

Figure 1: A greyscale plot of thin (L/128) sfices through the simulation cubes for n : +1

initial conditions, at the stage when k,.a = 8k !. (a) The N-body simulation. (b)

The adhesion approximation (AA). (c) The optimum, Gaussian-truncated Zel'dovich

approximation (TZA). All statistics below are calculated for this stage unless otherwise

specified.

Figure 2: As in Figure 1, but for n = 0 initial conditions.

Figure 8: As in Figure 1, but for n = -1 initial conditions.

Figure 4: As in Figure 1, but for n = -2 initial conditions.

Figure 5: The cross-correlation S between the N-body density field and the density field

of the approximate simulation (see equation [1]). Bold lines plot the cross-correlation

for AA against the rms fluctuation of the N-body density field, after both fields

are smoothed by convolution with identical Gaussian windows of various sizes. The

initial power spectra are n = +1 (longdash/shortdash), n = 0 (shortdash), n = -1

(longdash), and n = -2 (dotdash). Lighter lines show the cross-correlation of TZA,

for the same spectra.

Figure 6: Heavy sofid fines show power spectra of the evolved N-body simulations at two

stages (knl = 8kl and 4kf). Light solid lines show spectra of the adhesion simulations

at the same epochs. Dashed lines show spectra from TZA (shown at only one stage,

k,.a = 8k I, to prevent confusion).

Figure 'r: The average effective phase error in the adhesion simulations, quantified

by < cos 0 > as described in the text. Different fines represent n = +1 (long-

dash/shortdash), n = 0 (shortdash), rt = -1 (longdash), and n = -2 (dotdash).

Figure 8: The mass density distribution function in the N-body simulations (heavy solid

lines), AA (fight solid lines), and TZA (dashed lines). N(p) is the number of ceUs

with density (in units of the mean density) in the range p _ p + dp.
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